E-spatial

Beta

New application is live now

E-spatial

Single-cell spatial explorer

Notebooks

Premium

expiMap: Biologically informed deep learning to query gene programs in single-cell atlases
lock icon

BioTuring

The development of large-scale single-cell atlases has allowed describing cell states in a more detailed manner. Meanwhile, current deep leanring methods enable rapid analysis of newly generated query datasets by mapping them into reference atlases. expiMap (‘explainable programmable mapper’) Lotfollahi, Mohammad, et al. is one of the methods proposed for single-cell reference mapping. Furthermore, it incorporates prior knowledge from gene sets databases or users to analyze query data in the context of known gene programs (GPs).
Required GPU
expiMap
Geneformer: a deep learning model for exploring gene networks
lock icon

BioTuring

Geneformer is a foundation transformer model pretrained on a large-scale corpus of ~30 million single cell transcriptomes to enable context-aware predictions in settings with limited data in network biology. Here, we will demonstrate a basic workflow to work with ***Geneformer*** models. These notebooks include the instruction to: 1. Prepare input datasets 2. Finetune Geneformer model to perform specific task 3. Using finetuning models for cell classification and gene classification application
SpaCET: Cell type deconvolution and interaction analysis
lock icon

BioTuring

Spatial transcriptomics (ST) technology has allowed to capture of topographical gene expression profiling of tumor tissues, but single-cell resolution is potentially lost. Identifying cell identities in ST datasets from tumors or other samples remains challenging for existing cell-type deconvolution methods. Spatial Cellular Estimator for Tumors (SpaCET) is an R package for analyzing cancer ST datasets to estimate cell lineages and intercellular interactions in the tumor microenvironment. Generally, SpaCET infers the malignant cell fraction through a gene pattern dictionary, then calibrates local cell densities and determines immune and stromal cell lineage fractions using a constrained regression model. Finally, the method can reveal putative cell-cell interactions in the tumor microenvironment. In this notebook, we will illustrate an example workflow for cell type deconvolution and interaction analysis on breast cancer ST data from 10X Visium. The notebook is inspired by SpaCET's vignettes and modified to demonstrate how the tool works on BioTuring's platform.
scKINETICS: Inference of regulatory velocity with single-cell transcriptomics data
lock icon

BioTuring

In the realm of transcriptional dynamics, understanding the intricate interplay of regulatory proteins is crucial for deciphering processes ranging from normal development to disease progression. However, traditional RNA velocity methods often overlook the underlying regulatory drivers of gene expression changes over time. This gap in knowledge hinders our ability to unravel the mechanistic intricacies of these dynamic processes. scKINETICs (Key regulatory Interaction NETwork for Inferring Cell Speed) (Burdziak et al, 2023) offers a dynamic model for gene expression changes that simultaneously learns per-cell transcriptional velocities and a governing gene regulatory network. By employing an expectation-maximization approach, scKINETICS quantifies the impact of each regulatory element on its target genes, incorporating insights from epigenetic data, gene-gene coexpression patterns and constraints dictated by the phenotypic manifold.
Required GPU
scKINETICS

Trends

SpatialData: Visualizations and spatial query on 10x Genomics Visium

BioTuring

SpatialData (Marconato, Luca, et al., 2023) is a framework for processing spatial omics data, including - spatialdata-io: load data from common spatial omics technologies into spatialdata. - spatialdata-plot: static plotting library for spatialdata. - napari-spatialdata: napari plugin for interactive exploration and annotation of spatial data. In this notebook, we will illustrate the visualization functions implemented in SpatialData for Visium data. For datasets from other spatial technologies, please check this document. Also, we will use spatial queries to retrieve all the spatial elements and instances that are within a given rectangular window or polygonal shape from an example Visium brain dataset. The notebook content is inspired from SpatialData's vignette and modified to demonstrate how the tool works on BioTuring's platform.
SpatialData: Deep learning based cell type prediction on image tiles

BioTuring

SpatialData (Marconato, Luca, et al., 2023) is a framework for processing spatial omics data, including spatialdata-io: load data from common spatial omics technologies into spatialdata. spatialdata-plot: static plotting library for spatialdata. napari-spatialdata: napari plugin for interactive exploration and annotation of spatial data. In this notebook, we will illustrate an example to train a Dense Net which predicts cell types Xenium data from an associated H&E image. Particularly, we will access and combine images and annotations across different technologies, where the H&E image from Visium data, and the cell type information from overlapping Xenium data. Also, the two modalities are spatially aligned via an affine transformation. The notebook content is inspired from SpatialData's vignette and modified to demonstrate how the tool works on BioTuring's platform.