E-spatial

Beta

New application is live now

E-spatial

Single-cell spatial explorer

Notebooks

Premium

scVI-tools: single-cell variational inference tools
lock icon

BioTuring

scVI-tools (single-cell variational inference tools) is a package for end-to-end analysis of single-cell omics data primarily developed and maintained by the Yosef Lab at UC Berkeley. scvi-tools has two components - Interface for easy use of a range of probabilistic models for single-cell omics (e.g., scVI, scANVI, totalVI). - Tools to build new probabilistic models, which are powered by PyTorch, PyTorch Lightning, and Pyro.
Required GPU
scVI
NicheNet: modeling intercellular communication by linking ligands to target genes
lock icon

BioTuring

Computational methods that model how the gene expression of a cell is influenced by interacting cells are lacking. We present NicheNet, a method that predicts ligand–target links between interacting cells by combining their expression data with prior knowledge of signaling and gene regulatory networks. We applied NicheNet to the tumor and immune cell microenvironment data and demonstrated that NicheNet can infer active ligands and their gene regulatory effects on interacting cells.
Only CPU
nichenetr
Geneformer: a deep learning model for exploring gene networks
lock icon

BioTuring

Geneformer is a foundation transformer model pretrained on a large-scale corpus of ~30 million single cell transcriptomes to enable context-aware predictions in settings with limited data in network biology. Here, we will demonstrate a basic workflow to work with ***Geneformer*** models. These notebooks include the instruction to: 1. Prepare input datasets 2. Finetune Geneformer model to perform specific task 3. Using finetuning models for cell classification and gene classification application
Harmony: fast, sensitive, and accurate integration of single cell data
lock icon

BioTuring

Single-cell RNA-seq datasets in diverse biological and clinical conditions provide great opportunities for the full transcriptional characterization of cell types. However, the integration of these datasets is challeging as they remain biological and techinical differences. **Harmony** is an algorithm allowing fast, sensitive and accurate single-cell data integration.
Only CPU
harmonpy

Trends

spacexr: Robust Cell Type Decomposition and Cell type-Specific Inference of Differential Expression

BioTuring

Recent spatial transcriptomics (ST) technologies have allowed us to capture cellular heterogeneity while retaining spatial information. However, ST datasets may lose single-cell resolution, limiting the discovery of cell-type-specific spatial patterns of localization and expression. spacexr (Spatial-eXpression-R) is an R package providing two methods, i.e., Robust Cell Type Decomposition (RCTD) (Cable, Dylan M., et al., 2022) and Cell type-Specific Inference of Differential Expression (C-SIDE) (Cable, Dylan M., et al., 2022) for ST data. RCTD is proposed for cell type deconvolution, while leveraging references from another annotated single-cell RNA-seq data. C-SIDE identifies cell type-specific differential expression, accounting for localization of other cell types. We will illustrate an example workflow in two notebooks, RCTD and C-SIDE, on a hippocampus Visium dataset provided by the authors. The notebooks are inspired from spacexr's vignettes and modified to demonstrate how the tool works on BioTuring's platform.
Only CPU
spacexr